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On the Conjecture of Birch and Swinnerton-Dyer 
for an Elliptic Curve of Rank 3 

By Joe P. Buhler, Benedict H. Gross and Don B. Zagier 

Abstract. The elliptic curve y2 = 4x3 - 28x + 25 has rank 3 over Q. Assuming the Weil- 
Taniyama conjecture for this curve, we show that its L-series L(s) has a triple zero at s = 1 
and compute lim, _I L(s)/(s - 1)3 to 28 decimal places; its value agrees with the product of 
the regulator and real period, in accordance with the Birch-Swinnerton-Dyer conjecture if III 
is trivial. 

The object of this note is to verify the conjecture of Birch and Swinnerton-Dyer 
numerically (to high accuracy) for the elliptic curve 

(1) E :y2 = 4x3 - 28x + 25. 
The conductor of E is 5077, which is apparently the smallest conductor for a curve 
of rank 3 over Q. Since previous accurate numerical verifications were done for 
modular curves of rank 0 or 1, and these can now be confirmed theoretically [2], [4], 
it seemed desirable to test the conjecture for a curve of larger rank. 

We assume some familiarity with the theory of elliptic curves; good references are 

[3] and [5]. 

1. The Canonical Height Function. One of the main ingredients in the Birch- 
Swinnerton-Dyer formula is the regulator, i.e., the determinant of the matrix ex- 
pressing the canonical height pairing on E(Q) ? R with respect to a Z-basis of 
E(Q)/E(Q) tors- In this section we describe how to calculate the canonical height of a 
point P e E(Q). 

We first recall the definition. The global minimal model for E has the form 

(2) y2 +y=x3-7x+6, 
obtained by replacing y by 2y + 1 in (1) and dividing by 4; this equation has 
discriminant A\ = 5077. If P E E(Q), then the naive height of P is defined as 

(3) h(P) = logmax(lal, b), x(P) = a/b, b > 0, (a, b) = 1 
(here it does not matter whether we use model (1) or (2) for E, as the x-coordinates 
are the same); the canonical height is the unique quadratic form h on E(Q) ? R such 
that h (P) - h (P) is bounded, and the canonical height pairing is the associated 
bilinear form (P, P') = ((h(P + P') - h(P) - h(P')). The definition of h im- 
mediately implies the formula h (P) = limn n - 2h (nP), but this is not convenient 
for calculations. A formula which is usable is 

(4) h (P) = logb + F(x(P)), 
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where b denotes the denominator of x(P) as in (3) and F(x) is the real-valued 
function defined by 

00 

F(x) = log|x| + E 4-n-1logz, 

(5) 
n~~~~~~~~~~~~~~l=0 

(5) ~+14 50 49 x4 + 14X2 - 50x + 49 

x,1 Xn Xn 4x3 - 28xn+ 25 

Near x = 0 the first two terms in (5) become infinite, but we can combine them to 
obtain 

1 ~~~~~~~~~~~~00 
(6) F(x)= log(x4 + 14X2-50x + 49) + E 4-n-1logz 

tt= 1 

a formula which now makes sense for all x. Note that the formula relating xn+l to xn 
is the formula relating x(2P) to x(P) for P E E, so that xn = x(2 P). In particular, 
x,l > e3 = 1.946... for n > 1, where e1 < e2 < e3 denote the roots of the poly- 
nomial 4x3 - 28x + 25, so zn lies between 1 and 1.328 ... and log zn between 0 and 
0.284.... Therefore the series in (5) or (6) converges very rapidly and we can 
calculate h ( P) to any desired degree of accuracy. 

Formula (4) is the specialization to our case of a general recipe of Tate [6] for 
computing heights; indeed, F(x(P)) is Tate's formula for the infinite component of 
( P, P) while ord,(b)log p (p prime) gives the p-component of the canonical height 
(even for the prime p = 5077 of bad reduction, since the fiber of the Neron model at 
p is irreducible). However, Tate's result, although quoted in the literature, has not 
yet been published, so we give a direct proof of (4) in our case. By virtue of the 
definition, it will suffice to show that the expression on the right-hand side of (4) 
differs by a bounded amount from h (P) and is multiplied by 4 if P is replaced by 
2P. By the formula already cited, replacing P by 2P replaces x(P) = a/b by 
x(2P) = a*/b*, where 

a* = a4 + 14a2b2- 50ab3 + 49b4, b* = 4a3b- 28ab3 + 25b4. 

We claim that b* is the exact denominator of x(2P). Indeed, an elementary 
calculation with g.c.d.'s shows that (a*, b*) = 1 for any integers a, b with (a, b) = 1 
unless a 92b (mod5077), in which case 50771(a*, b*). But this cannot happen 
here, since 4x3 - 28x + 25 = 4(x - 92)2(x + 184) + 5077(20x - 1227) would be 
divisible by 5077 but not by 50772 if x were 92 (mod 5077) and hence, could not 
be a square. (This is an elementary restatement of the fact that the Neron model at 
5077 has only one component.) On the other hand, replacing P by 2P replaces xn, zn 

by x,n+1, Zn+ in (5), so 
00 

F(x(2P)) = logjx(2P)1 + E 4-n-1 log zn+ 
n=0 

= log|x(2P)| + 4(F(x) -log|x -4-4llog z0) (x = x(P)) 

= 4F(x) - log(4x3 - 28x + 25) 

= 4(F(x(P)) + log b) - log b*, 
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proving the second assertion. As to the difference of h and h, we can write (3) as 
h(P) = log b + log max( I a I/b, 1), so 

h(P) - h(P) = F(x) - logmax(|x|, 1) (x = x(P)). 

If x > e3 = 1.94... is in the right-hand component of E(R), then the same is true 
for all x,1 (n _ 0), so 1 _ z, ? 1.328 ... for all n in (5) and therefore 

00 

0 ? F(x)-log x _ E 4- n-1 log(l.328 ...) = 0.0947.... 
nl =0 

The other component el ? x ? e2 of E(R) is compact and we easily find the 
minimum and maximum of F(x) - log max(IxI, 1) there to be 0.4006 ... and 1.205 ... 
(obtained for x = el and x = -1, respectively; see Figure 1). Hence in all cases we 
have 

(7) h(P) ? h'(P) ? h(P) + 1.205.... 

This completes the proof of (4). We remark that the difference between the naive 
and canonical heights on elliptic curves has been studied by several authors (cf. [7] 
and the literature cited there) but that the inequality (7) is much sharper than the 
one obtained by specializing their results, suggesting that some improvements in the 
general case may still be possible. 

e~ ~ 2 
e e2 e3 

4~~~~ 

-3' -2 -1 0 1 2' 3 4 

FIGURE 1 

The functions F(x) and log max( IxI, 1) 

2. The Mordell-Weil Group and the Regulator. Let Np (p 0 5077) denote the 
cardinality of E(Z/pZ), i.e., 1 plus the number of solutions of (2) in integers modulo 
p. Then IE(Q)torsl must divide Np for allp > 2; since N3 = 7 and N5 = 10 it follows 
that E(Q) is free Abelian. We claim that it is of rank 3, generated by the three points 

P0 = (0, 2), P1 = (1, 0), P2 = (2, 0). 

It follows from Eq. (7) that these are the only points (up to sign) with canonical 
height less than 1, since h(P) ? h(P) ? 1 implies (cf. (3)) max(IaI, b) ? e and hence 
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(since b is always a square) b = 1, a E {-2, -1, 0, 1, 2}; of these five candidates, only 
a = 0, 1, 2 lead to points with h(P) < 1. On the other hand, one sees by a 2-descent 
(cf. [1]) that P0, P1, P2 generate E(Q)/2E(Q), which is of rank 3 over Z/2Z. These 
two facts and the fact that E(Q) is torsion-free imply by the usual proof of the 
Mordell-Weil theorem (cf. any text on elliptic curves) that E(Q) = ZPO + ZP1 + ZP2 
as claimed. Using the algorithm of Section 1 we can calculate the entries of the 
matrix 

.9909... -.2365... -.2764 ... 
A = ((P,, P))o_ i,J_<2 -.2365... .6682... .0333... 

-.2764... .0333... .7670... 

to any desired accuracy. The regulator is the determinant of this matrix: 

(8) R = det A = .417143558758383969817119544618093... 

As an illustration, we have given the representations of P as noP0 + n1Pj + n2P2 

and the naive and canonical heights of P for 18 integral points P E E(Q) in Table 1; 
the canonical heights can be computed either by the algorithm of Section 1 or as 

(n0n1n2)A(n0n1n2)'. One has of course also the negatives -P = (x, -y - 1) = 

-noPo - n1Pj - n2P2 with the same heights. The large number of 36 integral points 
seems to be typical of curves with a high rank relative to their conductor. 

TABLE 1 

Integral points on E 

x Y nO ni n2 h(P) h(P) 

-3 0 0 -1 -1 1.50192454 1.09861229 
-2 3 0 -1 1 1.36857251 .69314718 
-1 3 -1 0 -1 1.20508110 0.00000000 

0 2 1 0 0 .99090633 0.00000000 
1 0 0 1 0 .66820517 0.00000000 
2 0 0 0 1 .76704336 .69314718 
3 3 1 1 0 1.18592770 1.09861229 
4 6 -1 -1 -1 1.46677848 1.38629436 
8 21 1 -1 0 2.13229530 2.07944154 

11 35 -1 -1 1 2.43916362 2.39789527 
14 51 0 2 0 2.67282066 2.63905733 
21 95 0 0 -2 3.06817342 3.04452244 
37 224 -2 0 -1 3.62493152 3.61091791 
52 374 1 -1 2 3.96137952 3.95124372 
93 896 2 2 1 4.53836901 4.53259949 

342 6324 -2 0 1 5.83640586 5.83481074 
406 8180 0 2 2 6.00769815 6.00635316 
816 23309 1 3 -1 6.70508531 6.70441435 
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y 
69 ~~~~~~-P O-P 1 -P2/ 

y2 +y =x -7x +6 5-. 

4" 

-P 1P2 -1-0pr -P2 

P1-P2 Po+P2~ ~~~~~~p +Po 

FIGURE 2 
Integral points on F 

3. The Real Period. The group E(R) has two connected components. Let wc= 
dx/(2y + 1) be a Neron differential on E over Z, and IwI the associated measure on 
E(R). The real period 52 is defined by 

2 = 2 0@ = 2 1@ 
E(R) E(R) 

If we write (0.1) in the form y2 = 4(x - el)(x - e2)(x - e3) with e1 < e2< e3 
we may calculate this period integral using the arithmetic-geometric mean. This is 
defined on two positive real arguments x and y by M(x, y) = limn,1xn = 

limn-oyoY where xo=x, yO = y, xn1 = (Xn + yn)/2, yn+l = x . We find 
(Gauss): 

(9) u2= 4fo dx 27T 2zT 

y M(Fe3 -e , e3 e2 M(2.22689...,0.938503 ..) 

= 4.151687983086933049884175683507286.... 

4. The L-Series. The L-series for E over Q is given by an Euler product which 

converges in the right half-plane Re(s) > 3/2: 

L(E, s) = (1 + 5077-s)-1 r (1 - ap-s + pl2s)a = n 
p * 5077 ni = 1 
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where ap(p 0 5077) equals p + 1 - N with Np as in Section 2. We have 

A(s):= Ns/2(27r)sF(s)L(E, s)= | ' )Ys- dy 

where N = 5077 and f(iT) = r= lane 2e2inT (rT E C, Im(iT)> 0). The Weil-Taniyama 
conjecture states thatf(T) is a cusp form of weight 2 on To(N). We will assume that 
it is true. (This could be checked by a finite computation in the 422-dimensional 
space of cusp forms of this weight and level, but we have not carried it out; thus this 
note could more properly be described as a simultaneous numerical verification of 
the Birch-Swinnerton-Dyer and Weil-Taniyama conjectures.) Thenf(T) satisfies the 
functional equation f(-l/NT)= NT 2f (T) and the analytic continuation and func- 
tional equation of L(E, s) follow: 

(10) A(s) = f( j )(ys -y S) dy = -A(2 - s). 

In particular, the order of L(E, s) at s = 1 is odd and the rth derivative (r ? 1 odd) 
is given by 

A(r)(1) = 2f f( )(logy)rdy 

00 0 

= 2 E an fe-27nY/vN(logy)rdy. 
ii=1 1 

If A (s) vanishes to order > r at s = 1, then integrating (11) once by parts gives 

L(r)() (r)() = 2r! an 
2 

(12) P t)A=1r G 

where 
______ 0 

Vr 1 dy G .(x ) = 
(r J?e - Y(log y) - dy (r _ ) 

The series (12) is rapidly convergent, because Gr(x) - x-re-X as x xQ, so it can be 
used to compute L(r)(1) if we have a good algorithm to compute Gr(X)* 

The function GI(x) is the familiar exponential integral Jf e- Ydy/y, which can 
be calculated for small x (x < 3) by the power series 

GI(x) = log- -Y + E (1)! x' (-y = Euler's constant) x ,i=1 n -n! 

and for large x (x > 2) by the continued fraction expansion 

e-x 

G1(X) = 
I 

x + 

1+ 2 
x + ~~2 

1+ 

1+ + 
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Taking 250 terms of the series in (12) gives L'(1) = 0 to 13 decimal places. But this 
implies that L'(1)= 0 exactly, since the main result of [2] implies that L'(1) is a 
simple multiple of the height of some rational point on E ("Heegner point") and, as 
we have seen, E contains no rational points of very small nonzero height. Since L(s) 
has odd order, we have ords= 1 L(s) ? 3. 

In general, the functions Gr(x) satisfy Go(x) = e-x, Gr'(x) = -(1/x)Gr_1(x), so 

Gr(X) = Pr (log 1-) + E r lrn! 

for some polynomial Pr of degree r. To determine Pr, we use the integral representa- 
tion: 

(13) Gr(X) = 2 fi | () x- ds anyc > 0. 

(To prove (13), we observe that the right-hand side satisfies the same recursive 
differential equations as Gr(x) and tends to zero as x -> ox.) Shift the path of 
integration in (13) to the left; then the residue at s = -n gives the term (-1)" rx "/nr n! 

and the residue at s = 0 gives Pr(log 1/x). Hence, 

r t "71 ?? 
Pr(t) = Yr-rn m where 17(1 + s) - y,1s 

"7=0 17 = 0 

Since by Euler-Maclaurin 

00(_) 
)Sn log 17(1 + S) = --ys + E ~ ( 

n=2 

we find, for r = 3, the expansion 

G3 (X)= (lg +~3 -(log? -v)- + (1h1xP G()=6 (lg-Y 12 (lgx 7 3 17l n3n! ii=1 n 

which converges for all x. Using this we find the value 

(14) lim L( 3s -2 -AG(3~ 
s-(I (s - 1) =n 5077 

1.7318499001193006897919750851 

using the terms for n < 600 (the error made in breaking off the series here can be 
estimated using (12) and the formulas G3(x) X-3e-x and jaj11 _ d(n)rn, where 
d(n) is the number of divisors of n). 

The results of the computations described in this section are summarized in Table 
2. 



480 JOE. P. BUHLER, BENEDICT H. GROSS AND DON B. ZAGIER 

TABLE 2 

Computation of L'(1) and L "' (1) 

n a,, (A)2g 2gn 27 2,'g (7m) 2 'G 

1 1 1.93741992 2.26675143 3.87483985 4.53350286 
2 -2 1.32687953 .98498602 1.22108079 2.56353082 
3 -3 1.00056041 .54955613 -.78004003 1.46441856 
4 2 .78875755 .34359041 .00871752 1.80800897 
5 -4 .63840821 .22972608 -1.01273562 1.44044725 
6 6 .52596620 .16064962 .03919678 1.76174648 
7 -4 .43894007 .11604939 -.46244901 1.62911861 
8 0 .36992797 .08592813 -.46244901 1.62911861 
9 6 .31419941 .06487957 -.04351647 1.71562470 

10 8 .26856035 .04977090 .38618010 1.79525814 
50 -22 .00231086 .00005681 -.00236637 1.73179489 

100 22 .00001521 .00000013 .00001335 1.73185001 
250 48 .00000000 .00000000 .00000000 1.73184990 

5. The Conjecture. The conjecture of Birch and Swinnerton-Dyer predicts that 
ord s1L(E, s) = rank(E) = 3 and that 

rnL(E, s) 
lim ( - = 9 - R - Card(II) 
sl1 (s- )3 

where III is the (conjecturally finite) Tate-Shafarevich group of E over Q. Equations 
(8) and (9) give 

Q R = 1.731849900119300689791975085060154... 
which agrees with the right-hand side of (14) within the accuracy of our computa- 
tions in Section 3. This strongly suggests that the conjecture is true and that 
III = (1). We have checked, via a 2-descent (cf. [1]), that the 2-primary component of 
III is trivial. 

6. Acknowledgment. We would like to thank J.-F. Mestre for some useful sugges- 
tions. 

Note added in proof. It has now been verified by J.-P. Serre and J.-F. Mestre that 
the curve E satisfies the Weil-Taniyama conjecture (cf. beginning of Section 4), thus 
unconditionally justifying the calculations in this paper. 
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